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Mechanism of exchange bias for isolated nanoparticles embedded in an antiferromagnetic matrix
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Single magnetic nanodots, exchange coupled to an antiferromagnetic (AF) matrix, can produce large ex-
change bias, while superparamagnetic behavior of the nanodots is suppressed. The exchange bias originates
from the formation of a (quasi)spherical domain wall inside the AF matrix when the particle moment rotates
under the influence of an external magnetic field. Micromagnetic calculations show that for isolated nanodots
the energy of this domain wall increases nearly quadratically with the deflection angle of the nanodot moment.
By introducing the corresponding quadratic energy term in a modified Stoner-Wohlfarth model, a two-
parameter family of hysteresis loops is obtained, depending on scaled anisotropy energy and field direction.
The loops are represented in a phase diagram with three main regions, containing (1) reversible loops, (2)
irreversible loops with a metastable 180° AF domain wall, and (3) loops with metastable AF domain walls with
360° or higher rotation angles. According to this model, isolated nanodots display reversible negatively biased
loops for all field directions, if their anisotropy energy is small in comparison to the AF domain-wall energy.
For higher anisotropy, irreversible, mostly negatively biased, loops result from switching between the ground
state and an higher-energy inverse state with a 180° AF domain wall. At even higher anisotropy energy, the
loops can show positive exchange bias after an initial “training branch.” Switching after “training” takes place
between states having a 180° and a 360° AF domain wall, respectively. While for thin films, the bias field
increases in inverse proportion to thickness, for nanodots it increases in inverse proportion to the square of
particle diameter. Therefore, nanodots can show significantly larger exchange bias than thin films of similar
dimension. Hysteresis loops, obtained from averaging over directions and sizes using the modified Stoner-
Wohlfarth model, were compared to measurements from a natural sample with nanometer-scale ilmenite-
exsolution lamellae in a hematite matrix. The shapes of the hysteresis difference, the difference between upper
and lower branches, are similar for model and experiment, whereby increasing temperature in the measurement

corresponds qualitatively to decreasing the relative anisotropy energy in the model.
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I. INTRODUCTION

A. Exchange bias in coupled systems

Exchange bias has been found in thin films and nanopar-
ticle structures, containing exchange-coupled interfaces be-
tween two different magnetic materials."> Typical examples
are thin films containing ferromagnetic or ferrimagnetic
(FM) layers in contact with antiferromagnetic (AF) layers,
and core-shell nanoparticles, with FM core and an AF shell.2
However, certain AF-AF interfaces are also known to pro-
duce exchange bias.? Extremely large exchange bias of more
than 1 T at 5 K occurs in natural samples with ilmenite-
exsolution lamellae in a hematite matrix,* carrying uncom-
pensated moments at the interface between bulk AF hematite
and AF ilmenite lamellae.*~® The ilmenite lamellae are three-
dimensional nanometer-scale inclusions in the bulk hematite
matrix. They do not form extended planar structures compa-
rable to thin films.>”® To understand the physical mechanism
of exchange bias in this system, we developed a general
micromagnetic model describing isolated FM nanoparticles
embedded in an AF matrix, which covers lamellar magne-
tism as a special case. For hematite-ilmenite lamellae this
model complements an earlier atomistic Monte-Carlo study
of Ref. 9.

For thin films and wuniaxial magnetocrystalline
anisotropies® the total energy E(¢,) per surface S, is
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E/S = 2\’/&(1 — COS ¢Q) - MFMHIFM COS ¢0

+ Kppitpn €OS° . (1)

Here, ¢, denotes the deflection angle of the bulk FM mo-
ment, and nearby AF spins, from the easy axis. The thickness
of the FM layer is fgy, and Kgy is the FM anisotropy con-
stant. A denotes the phenomenological exchange constant
and K the bulk magnetic anisotropy constant of the AF ma-
trix. The cos ¢, term in the total energy implies that inverse
magnetization states have different energies. This asymmetry
is due to the presence of a domain wall (DW) in the higher-
energy reversed state and results in a bias field?

Hp = VAK/ (Mt (2)

inversely proportional to fgy. In case of small magnetic in-
clusions, with particle radius ry less than the AF domain-wall
width ~N\,p=VA/K, the thin-film approximation is not ap-
plicable, and the inclusions must be regarded rather as FM
nanodots in the AF matrix.

In Sec. II, we demonstrate by micromagnetic calculation
that the AF DW around a deflected FM nanodot approxi-
mately contains the energy
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FIG. 1. (Color online) In equilibrium position (a), the FM moment of the nanodot is embedded in the AF matrix and aligned with its easy
uniaxial axis which is assumed to be parallel to the AF sublattice magnetization direction. Applying a small negative field H at an acute angel
x in (b) rotates the FM moment, while the AF matrix experiences no magnetic torque. However, the tilted FM moment also deflects the
exchange-coupled AF matrix (c). The AF deflection rapidly decays with distance from the nanodot, and one can define a circle of constant
deflection ¢y (d), whose varying radius R serves as a visual representation of the rotation in the AF matrix. In three-dimensional space, equal
deflection actually occurs on concentric spherical shells as drawn in (e). Increasing the negative field strength in (f), increases R. For high
anisotropy energies, the moment switches to a more favorable position at some critical field strength H ., (g). Removing the field at this state
(h), moves the FM moment toward its inverse easy anisotropy position, which still requires a spherical AF domain wall around the nanodot.
This new state (h) has a higher energy than the previous state (i) without the spherical AF wall.

Epw = 477\/1&("0)\“) ¢3~ (3)

Based on this domain-wall energy, we then develop in Sec.
IIT a modified Stoner-Wohlfarth model, to describe all pos-
sible hysteresis loops of isolated nanodots by a two-
parameter family, depending on scaled anisotropy energy and
field direction.

B. Overview of the physical mechanisms

We here briefly sketch the two main physical ideas of our
isolated-nanodot model, the structure of the energy term in
Eq. (3), and the mechanism of exchange bias. The FM nan-
odot, embedded in the AF matrix, is approximated by a mag-
netized sphere with a single, uniaxial easy axis in Fig. 1(a).
By applying a field H at some angle, the FM moment rotates
into angle ¢, and drags the AF matrix along [Fig. 1(b)]. The
locally rotated AF spins create a high exchange-energy den-
sity, which must be rapidly relaxed by AF spin rotation from
¢y, at the nanodot interface, to almost zero within some dis-
tance R, which either has the characteristic dimension A g of
the planar AF DW width or of the sphere radius r, [Fig.
1(c)]. The smaller value is physically plausible, because it
creates a smaller total exchange energy. This will be shown
formally in Sec. II. One then has R r,, and the exchange-
energy density is about A[V¢(r)]>=A(¢y/ry)?, which yields
the AF-DW energy in Eq. (3). This DW energy is propor-
tional to the FM-nanodot diameter not to its surface area as
in case of thin films.

To understand the origin of exchange bias one has to con-
sider minimization of exchange energy plus anisotropy en-
ergy within the AF matrix. Substantial matrix deflection,
larger than some small angle ¢r=c, occurs within the
spherical shell of radius R [e.g., @=5° in Figs. 1(c)-1(e)].
Increasing H, also increases ¢, and thereby R [Fig. 1(f)]. If
the anisotropy energy of the nanodot is sufficiently high it
creates an energy barrier higher than the energy needed to
deflect the matrix. In this case—and only then—there exists
a critical field strength, above which the FM moment irre-
versibly switches to an energetically more favorable position
closer to its easy anisotropy axis [Fig. 1(g)]. Removing the
field at this state can even leave the nanodot moment close to
opposite to its initial direction [Fig. 1(h)]. Unlike the initial
state, the new inverse metastable state requires a spherical
AF domain wall around the nanodot. Therefore, the new
state in Fig. 1(h) has higher energy than the initial state,
without a spherical AF DW [Fig. 1(i)]. This energetic asym-
metry between oppositely magnetized states shifts the hys-
teresis loop toward negative fields with respect to the field
direction indicated in Fig. 1(b). The growth of the spherical
DW surface area in Fig. 1 visually supports the claimed qua-
dratic increase in DW energy with ¢ in Eq. (3). For large ¢,
this term is distinctively different from the empirical cos ¢
relation'-? for thin films. Estimating the possible bias field Hy
by again equating AF-DW energy with the magnetostatic en-
ergy, the nanodot bias turns out to be inverse proportional to
r(z), and thus increases considerably faster with decreasing r
than Hp for thin films increases with decreasing fpy;.
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Formally, Eq. (3) resembles an elastic-torque energy for
the magnetic moment, where torque increases linearly with
deflection. The qualitative reason for this torque is that, other
than planar domain walls which have a fixed energy of for-
mation, a spherical DW around a nanoparticle cannot propa-
gate indefinitely through the AF matrix, because its surface
and energy increase quadratically with radius. As a cautious
note we add that this picture describes only isolated nan-
odots, where the spacing between nanodots in the AF matrix
is large in comparison to nanodot size and Aag. Collective
switching in dense nanodot systems is the topic of ongoing
research.

II. AF DOMAIN-WALL ENERGY AROUND AN EMBEDDED
MAGNETIC NANOPARTICLE

We consider a homogenous magnetic moment m, strongly
exchange coupled to the surrounding AF matrix. The mo-
ment either originates from a FM inclusion (e.g., in core-
shell nanoparticles) or from a surface moment due to uncom-
pensated spins of the AF lattice (e.g., ilmenite lamellae in
hematite matrix’). In the continuum theoretical description
the magnetization orientation of the AF matrix is represented
by the antiferromagnetic vector

t=(a—b)/2 4)

of its antiparallel sublattice moments a and b, belonging to
adjacent AF planes.’

A. Micromagnetic energy contributions

In the micromagnetic approximation, the physical state of
the system is obtained by minimizing the sum of the follow-
ing energies. (1) Exchange energy of the antiferromagnetic
lattice

f A(Vt)2adv, (5)
1%

AF

where A is the phenomenological exchange constant of the
AF matrix, and the integral is over the volume Vg of the AF
matrix.

(2) Anisotropy of the antiferromagnetic lattice

K[1-(t-u)*]dV (6)

VAF

where K is the volume-specific uniaxial anisotropy constant
and *u represents the easy axis of the AF matrix.

(3) Magnetocrystalline anisotropy of the embedded mo-
ment

K,[1-(m-v)’], (7)

where K, is the uniaxial anisotropy energy of the embedded
moment m and *v points in the easy axis for m.
(4) Anisotropy energy of the interface exchange coupling

—-Dm-t, (8)

where D is the interface-coupling energy between FM mo-
ment and AF matrix. In the following we will assume that
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this coupling is strong enough, to consider m and t as being
essentially parallel.
(5) External-field energy of the embedded moment

- /,Lom . H, (9)

where H is the external field vector. In addition, the FM
inclusion is assumed to be homogeneously magnetized
throughout.

B. Outline of the approximation

To calculate the domain-wall energy around a nanodot we
describe the bulk AF matrix outside the particle by its AF
vector t(r).> We impose the boundary condition of homog-
enous nanodot magnetization, which requires a constant
value t(r)=t, on the particle surface. At infinity we request
t(r)=u. The total energy in the AF matrix is the sum of Egs.
(5) and (6), which in the appropriate units of \ zp for length,
and AN ,r for energy, is given by

- f (VO +{1 [t -uPav.  (10)
\%

AF

Minimization of e,p under the boundary conditions then
yields the t(r) dependence for the spherical domain wall.
The nonlinear terms in Eq. (10) make an exact analytical
solution impossible. Therefore we first derive an approxi-
mate analytical solution for spherical and spheroidal par-
ticles, which allows for a systematic understanding and clas-
sification of the hysteresis processes. The validity of this
approximation is subsequently supported by comparison to
accurate numerical solutions of the exact equation.

C. Mathematical treatment of exchange energy

In the following, the angle ¢ describes a rotation of t in
the x-y plane, spanned by the uniaxial easy axis u and the
field direction. The out-of-plane component is described by
6, such that t=(cos 6 cos ¢,cos 6 sin ¢,sin 6). According to
Ref. 10, the exchange energy in Eq. (5) in polar coordinates
then becomes

e, =A[(VO)? + cos? 6(Vp)?]. (11)

The Euler-Lagrange equations for only minimizing Eq. (11)
under the given boundary conditions are

AO+sin 20(V)> =0,

cos” BA¢p—sin 20V ¢V 6=0. (12)

The choice of #=0, A¢=0 yields a solution of these equa-
tions, which has minimal energy, because Eq. (11) is non-
negative. Because =0 also minimizes Eq. (6), minimizing
the exchange energy in Eq. (11) for this case simplifies to
minimizing

e, =AVe)>. (13)

This ensures that the magnetization always lies in the x-y
plane, and only the angle ¢ is relevant in the following.
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D. Approximate analytical DW energy

For the approximate analytical solution, we split Vp into
an inner region V| and an outer region V,. The boundary
between these regions is chosen to coincide with the surface
where ¢=0.5. Inside V|, close to the particle surface, the
large deviation from the easy anisotropy axis requires that
rapid angular variation occurs. Exchange energy dominates
the magnetization change in V), because anisotropy energy
itself, although high, is bounded in V;. Therefore, it can be
neglected for the minimization. This seems paradoxical,
however, the need to diminish the anisotropy energy in V| is
taken into account by the boundary conditions, which require
the rapid change from the nanodot surface to the outer
boundary of V,. The details of this change are then domi-
nated by the exchange energy, which tries to avoid large
gradients. In the outer region V, the deflection of ¢ from
zero is small, and after linearizing the sin ¢ term, the Euler-
Lagrange equation becomes a Helmholtz equation, which
can be solved analytically.

After the simplification in Sec. II C, the rescaled total
energy in spherical coordinates is

E= 477'foc r[3,d(r)? + r? sin® ¢(r)dr. (14)

€

Neglecting anisotropy energy leaves in V; the energy

R
E = 47TJ r[d,.¢(r)Pdr. (15)
In the outer region V,, replacing sin ¢ by ¢ yields
E,= 477[ L0,d(r) ) + r2(r)2dr. (16)
R

The cutoff radius R between the two regions depends on the
choice of the angular deviation ¢y at R and on the nanopar-
ticle radius €. As shown in Sec. II C, minimizing Eq. (15)
leads to the Laplace equation

rdr (r) +20,¢(r) = 0 (17)

for ¢(r) in V,, which also must fulfill the boundary condi-
tions

d(e) =y,  HR)= . (18)
The unique solution of this boundary value problem is
Bi(1) = oS+ (19)
which gives the energy
/() =4meldy - =2 (20)

Minimizing Eq. (16), leads to the Euler-Lagrange equation

ray(r) +23,(r) = rep(r) = 0 (1)

for ¢(r) in V,, which must fulfill the boundary conditions
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H(R) = g, Pp(0) =0. (22)
This Dirichlet problem has the unique solution
R
$alr) = e, (23)
with energy
E(¢) = 4m¢zR(1 + R). (24)

The combined approximate solution is obtained by minimiz-
ing the total energy E;(¢;)+E,(¢,) with respect to ¢y,
which yields

€

R(1+R-¢)’ 25)

dr= o
This solution also turns out to be differentiable at r=R. An
appropriate cutoff radius R is found by requesting that ¢
=min(¢y,0.5), which is smaller than ¢, and also justifies the
linearization in V,. The resulting expression for R is

R=max<e,%[e—1+\’(6—1)2+86¢o]). (26)

Thus, the cutoff radius R is of order e. This physically means
that the initial deflection ¢, dies out, over a characteristic
distance on the order of the inclusion size r, instead of over
the larger size N\, as in the thin-film case. The approxima-
tive total energy of a spherical nanodot, with radius € and
deviation angle ¢,, is

E(¢y.€) = 4 ¢p, (27)

where
e
€ =min(e(1 +€),e+ i[ns— 1+V(e-1)*+ 86({)0])
4o

(28)

lies always between € and €(1+e€), and for e<<1, in second
order approximation, is equal to €(1+¢€) (Fig. 2). This result
justifies the qualitative energy term in Eq. (3) in the intro-
duction, and improves it by second-order terms in € and by
the additional ¢, dependence. The latter becomes important
only for large ¢,.

E. Comparison between approximate and exact solution

The approximate solution in Eq. (27) can be tested by
numerically solving the Euler-Lagrange equation for Eq.
(14). We do this for a spherical nanodot with radius r, and
for boundary conditions ¢(ry)= ¢, and ¢()=0, by using the
shooting method for ordinary differential equations on a suf-
ficiently large, but finite interval. The variation in energy as a
function of ¢, in comparison to Eq. (27) is shown in Fig. 3
for €=0.9. The inset of Fig. 3 directly compares the radial
variation ¢(r) for one approximate solution according to
Egs. (19) and (23) (dashed line) to the exact numerical solu-
tion (solid). Even though the difference between solution and
approximation is visible, it is not crucial for the qualitative
behavior. The corresponding energies deviate by less than
15% for this case.
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FIG. 2. (Color online) Relation between real nanodot radius €
and its effective radius € defined in Eq. (27). Using Eq. (28), the
graph plots the relation €/ € for different values of € and ¢,. For
small ¢o=0.5 the effective size is € =€(1+¢€), while for large ¢,
€, and €'/ € approaches 1. € always underestimates €", but at most
by the factor 1+e.

F. Extension to oblate ellipsoidal nanodots

The energy expression (27), derived for spherical nan-
odots, can be generalized analytically to a nanodot, which is
an ellipsoid of revolution with scaled minor axis €;, di-
rected along the z axis, and two major axes €, in the (x,y)
plane. For an external field applied in the (x,y) plane, the
deflected magnetic moment is m=[cos(¢y),sin(¢,),0]. The
spatial variations in the AF vector t outside the nanodot are
again described by ¢, but now in oblate spheroidal coordi-
nates (o, 7) as defined in Ref. 11. For the possible range of
=0, -1 =r7=1, the surfaces of constant o are oblate sphe-
roids. Their focal distance a is chosen such that a surface
o=0y coincides with the particle surface when €.,
=ay 1+0%) and €,,;,=aoy. Thereby, the boundary conditions
are

FIG. 3. Comparison between energies of exact numerical solu-
tion (filled dots) and approximation (circles) for €=0.9 as a function
of ¢y. The inset shows the radial dependence of the solution ¢(r)
for ¢py=4.7. The shaded area is the 10X magnified difference be-
tween exact solution (solid line) and approximation (dashed).
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FIG. 4. (Color online) Variation in ¢ around an oblate elliptical
nanodot (black). Units are scaled to A\ zg, and contour labels indicate
rotation angles in multiples of 7. The diagram shows only one
quarter of the cross-section. The z axis is the rotation axis.

Do) = g, () =0. (29)

Minimizing the exchange energy in Eq. (13) corresponds to
solving the Laplace Eq. (12) for #=0, and yields

a Y
—|(1+d)—|=0. 30
30[( ) (70] (30)
The complete boundary value problem has the solution
arctan(1/o)
=—0, 31
#o) arctan(1/o0y) %o S

which neglects anisotropy energy, but results in a good,
lower estimate of the total energy

47Ta3¢0

j f ddo 47Ta¢(2)
arctan’(1/0;) 0 aA(1+d)

arctan(1/0y)

(32)

EZE

~Lex =

This expression demonstrates that the AF domain-wall en-
ergy around an oblate nanoparticle also depends quadrati-
cally on ¢,. In the spherical limit oy— o while keeping
€min=0a00, Eq. (32) becomes 4 e, #?, which is exactly the
expression for the sphere. The limit of a very flat spheroid
corresponds to o<1, and Eq. (32) becomes E= 8&,.,bs.
This is the same energy as for a sphere with radius e
=2/ €, despite the drastic difference in volume. The re-
sult indicates that the energy expression (27), derived for a
spherically shaped nanodots, essentially describes any flat
object of approximately the same characteristic radius. The
angular variation, inferred from calculated ¢—contours in
the vicinity of an oblate ellipsoid (Fig. 4), is most rapid in
regions of small elliptical dimension, where integrating over
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a high exchange-energy density does not lead to a high total
energy. Thereby, the surfaces of equal ¢ rapidly become
more spherical.

III. HYSTERESIS OF NANODOTS
A. Energy contributions

In the previous section we have shown that the AF
domain-wall energy for isolated spherical nanodots in good
approximation is given by Eq. (27). Calculating the hyster-
esis loops of spherical nanodots requires two additional en-
ergy terms. First, the external field energy

M
E,.(¢,ry) =— 477,u0H<,u,ré + ?r?))cos((j) -x), (33)

where the field H is applied in the basal plane with angle y
versus the easy axis of the AF matrix, and the particle mo-
ment is assumed to change proportional to the sphere’s sur-
face as 47T/.LV(2), where w is the specific surface moment of the
particle. A bulk FM moment is taken into account through
the term 47TMS/3}"8. In addition, there is the anisotropy en-
ergy E,,, which describes a preferred magnetization axis of
either the surface moment or the bulk FM moment. The sur-
face part of this anisotropy again scales with 47Tl’%, while the
anisotropy of the inner volume scales with 4/ 3r8. Thus we
obtain

41
E, (¢, e)=— 477Ksr(2) cos*(¢p— ay) — ?erf) cos’(p—a,),

(34)

where «; and «, determine the easy directions, and K, and
K, are the anisotropy constants of surface and volume aniso-
tropy, respectively. The two simplest cases are (1) to consider
only surface anisotropy, surface moments, and assume «;
=0 or (2) to consider only volume anisotropy, volume mag-
netization and «,=0. Using €" from the previous section, the
scaled total energy in the first case is

e, =————E =€ ¢* — hé® cos(p - x) — k€ cos® ¢,
ATAVAR ¢ (=X ¢
(35)

wheﬂ is measured in units of \fﬁ/(uo,u,), and «, in units
of VAK. In the second case one obtains

1 1 1
e,=————E,=€'¢*— —he cos(¢dp— x) — —k,€ cos’ ¢,
Ny & 3 d-x 3 Ko ¢

(36)

where now h is ugM H/K and «, is K,/ K.

B. A Stoner-Wohlfarth model of embedded nanodot hysteresis

To obtain a simplified description of the general hysteresis
properties of isolated nanodots embedded in an AF matrix, it
is assumed that €” in Eq. (27) is a constant effective diameter
of the nanodot. This approximation simplifies the above
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more complete physical theory to a model system, which is
described by the energy function

e =¢*—h* cos(¢p— x) —k* cos . (37)

Here h* represents the field and k* the anisotropy constant.
Both are additionally scaled by particle size €. In the case of
surface energies as in Eq. (35), k* corresponds to €’/ € and
h* to hée*/€. For volume energies as in Eq. (36), k*
=1/3k,€/ € and h*=1/3he’/ €. The only real simplification
in this model system is the neglect of the ¢ dependence of
the coefficient € of ¢* in Eq. (27). The hysteresis loops,
obtained by minimizing Eq. (37), form a two-parameter fam-
ily and are easily characterized. The minima of Eq. (37) are
defined by

3k

;d) —2¢+ 1" sin(¢p— x) +K* sin2) =0,  (38)

e .

Py =2+h" cos(¢p— x) +2k* cos(2¢) > 0.  (39)
The switching field is found by setting both derivatives to
zero in Egs. (38) and (39). In a uniaxial field, for given k*, ,
and h*, the energy can be plotted as a function of ¢. By
starting in the unique global-energy minimum at large posi-
tive field 1", one can stepwise change the field and trace the
evolution of the minimum state. In this way a hysteresis loop
can be calculated for each pair of values for k* and y. The
resulting two-parameter family of hysteresis loops is repre-
sented in the phase diagram in Fig. 5. Three main regions
can be distinguished. First a region of low k", or large Y,
where all magnetization changes are reversible due to the
dominance of the ¢? domain-wall energy term [Fig. 5(C)].
The second region has intermediate k* and contains nega-
tively shifted loops with irreversible switching processes
[Figs. 5(A) and 5(B)], corresponding to 180° spherical do-
main walls pinned by anisotropy energy as sketched in Figs.
1(g) and 1(h). In the third region domain walls with larger
rotation angles occur [Fig. 5(D)].

A typical shifted loop due to 180° domain-wall formation
is shown in Fig. 6. Here, at the positive field 2*=5 a clear
single minimum state with positive ¢,;, exists [Fig. 6(b)].
For larger fields, additional metastable minima appear, which
correspond to = * 2 rotated states with additional 360° AF
spherical domain walls. When the field is decreased to —9 the
moment is caught by the negative anisotropy direction which
stabilizes the spherical domain wall. At large negative fields,
two separate minima exist. They correspond to two possible
domain walls for rotation angles of the moment lying =2
apart. Reducing the field, switches the angle back to values
close to ¢=0 only at about h*=-5 [Fig. 6(b)].

A more complicated process occurs in the upper region of
the phase diagram [Fig. 5(D)]. A typical loop in this region
starts with positive ¢ for state A in a large positive field A*
=20 in Fig. 7, where the moment tries to align with the field.
By reducing the field, the moment rotates backward until at
some negative field value in state B it switches into negative
alignment with its easy axis [B— C in Fig. 7(b)], because the
gain in anisotropy energy by switching to state C is larger
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FIG. 5. Phase diagram of nanodot hysteresis properties. The three regions delineate (1) reversible negatively biased loops for small k£* (c),
(2) biased irreversible loops with hysteresis and 180° AF domain walls (A,B), (3) reversible or irreversible positively biased loops which
after the first “training branch” form 360° AF domain walls (d). At even higher k* further subdivisions of region 3 exist, which are not
delineated here. They correspond to formation of n X 180° walls with n>2 and are probably of little practical importance. The right panel
shows four characteristic examples of loops in the three regions. They are calculated by starting at #=30 and decreasing the field to h=
—30 (solid line), then the field is again increased to h=30 (dashed) and decreased to #=-30 (dotted). In C all three curves are the same, in

A and B the dotted line falls on the solid line.

than the increase in DW energy. Because the anisotropy of
k*=5.5 is strong enough, the moment in state C is more than
180° away from the positive-field direction y. Therefore, the
moment will never rotate back from C— B by increasing the
field. Instead, it will continue to rotate toward more negative
angles, in spite of increasing DW energy. At some point it
even switches again into positive alignment with its easy
anisotropy axis [C—D in Fig. 7(b)]. Because subsequent
field cycling never restores the initial lowest-energy state, the
first hysteresis branch A— B is a “training” branch for the
final loop between a state with a 180° and a 360° wall. For
even larger k*, this training process can theoretically be re-
peated several times until the final loop switches between a
state with a (n—1) X 180° DW and one with a n X 180° DW.
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FIG. 6. (Color online) Modeled hysteresis loop for k*=2.5, x
=0.2(7/2) for h* between =30 and 30. The magnetic moment (a) is
clearly shifted due to domain-wall formation. The hysteresis of the
FM angle ¢ (b) shows the asymmetric switching between the en-
ergy minima. The insets in (b) depict energy as a function of ¢ and
show which magnetization state is assumed (black dots). The insets
also indicate why the irreversible switching processes occur only at
negative 1 (circle to dot).

IV. DISCUSSION AND CONCLUSIONS
A. Modeling natural ilmenite lamellae in a hematite host
The initial aim of this study was to explain the unusual

low-temperature hysteresis properties measured on natural
samples from an area of a negative magnetic anomaly over
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FIG. 7. (Color online) Energy plots for k*=5.5, x=0.4(7/2),
and different values of 4*=20,10,0,-10,-20. The minimum state
is indicated by a disk. Starting at 2*=20 in state A, the field is
decreased until in state B the minimum becomes unstable and irre-
versibly shifts to smaller ¢ in state C. All further variations in 4"
between —20 and 20 shift the minimum state between C and D. The
initial state A cannot be reached.
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FIG. 8. The first and third rows show a sequence of hysteresis differences, measured at increasing 7 for sample MODLB-2 after imposing
a 7 T field at room temperature, and cooling in zero field to 5 K. The exchange bias during warming vanishes close to ilmenite’s Néel
temperature of 57 K. Shape and size of the biased loops may contain information about the spectrum of lamella size and magnetic moment.
The even rows show modeled hysteresis differences for an ensemble of nanodots according to Eq. (35) with €*=¢, which has a fixed
distribution of lamella sizes e=0.3—1 in steps of 0.05, and an angular average from x=0.177/2— 0.37/2 in steps of 0.0577/2. The distribution
function is chosen proportional to 1/ €2, such that all modeled curves contribute equally to the moment. By varying the surface anisotropy
of the nanodot from «,=10 down to x,=3, the obtained hysteresis differences resemble the measured curves.

the 1 Gyr-old metamorphic complex in the Modum district,
South Norway. These exsolved rhombohedral oxides of he-
matite with ilmenite exsolution have astonishing magnetic
properties, related to unbalanced magnetic moments at nano-
scale exsolution interfaces.>®!2-1* The most spectacular ob-
servation is low-temperature exchange bias of more than 1
T.* During zero-field cooling of the NRM, the onset of il-
menite’s AF ordering at Ty=~57 K induces a remanence
drop of about 10%. This implies that the ilmenite phase is
magnetically coupled to the NRM carriers, and that this cou-
pling is inverse. The coupling effects are nearly completely
reversible upon reheating the sample to room temperature.
Curie temperatures of the hematite host are between 610 and
620 °C.% Because the lamellar moments arise from uncom-
pensated AF sublattice spins of the hematite host at the in-
terface to ilmenite, these spins are thermally stable almost up
to the above Curie temperature. Therefore, at low tempera-
tures, thermal activation of the nanodots can be neglected,
apart from the variation in the phenomenological material
parameters as functions of 7.

In Fig. 8 the results of low-temperature hysteresis mea-
surements from sample MODLB-2 are compared to a se-
lected model calculation. The data shown are the hysteresis
difference, the difference between upper and lower hysteresis
branches, for the natural sample MODLB-2. The results

closely resemble similar measurements on sample MODK-4
in Fig. 6 of Ref. 6. Here, the sample was given a remanent
magnetization in an inducing field of +7 T at room tempera-
ture and then was zero field cooled to 5 K, followed by a
sequence of hysteresis curves between +7 and -7 T, at in-
creasing temperatures. All measurements were performed in
a MPMS-XL (Quantum Design) at the University of Bremen,
Germany.

The first and third rows in Fig. 8 display the measured
hysteresis differences, which only represent the irreversible
magnetization processes, thereby canceling all reversible sig-
nals from admixed paramagnetic minerals in the natural
sample. To compare these data with model results, it is as-
sumed that the lamellae have pure surface moments from
uncompensated spins at the AF-AF interfaces, and that their
surface anisotropy «,(7) is related to ilmenite, and increases
with decreasing temperature below Ty=57 K. In the natural
samples, the lamellae share a coherent interface with the he-
matite host, such that the field direction should not be spheri-
cally averaged, as for isotropic samples. It is found, that
using Eq. (35) with €'=¢, and a fixed lamella size distribu-
tion from €=0.3-1, the experimentally observed change in
shape of the hysteresis difference with increasing tempera-
ture is qualitatively well reflected by decreasing «, from 10
to 3 in the modeled nanodot distribution with field angles
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x=(0.1-0.3)7/2. The model results are displayed in the sec-
ond and fourth rows of Fig. 8. Although this qualitative
agreement provides no proof for the correctness of the cho-
sen model, it shows that the proposed mechanism of nanodot
hysteresis is able to provide a possible explanation, even for
details of the observed hysteresis properties. Especially, the
model result that increasing «, shifts the negative coercive
field H? of the upper branch to the left, and increases the
hysteresis width, i.e., increases H, of the lower branch,
seems to coincide with the experimental observation. There-
fore, the general structure of the energy Eq. (37) apparently
captures the essential features of real hysteresis behavior of
embedded nanodots, although, according to microscopic ob-
servations, the shapes of natural ilmenite lamellae closer re-
semble oblate ellipsoids than spheres.!> However, due to the
similarity of the AF DW energies [Eqs. (32) and (27)], the
phenomenology of the hysteresis loops remains unchanged
for oblate nanodots. Only the parameters 4* and k* in Eq.
(37) have to be properly rescaled. To account for the smaller
volume of the oblate ellipsoids, they must be multiplied by
€min/ €max» Whereby both coercive force and bias field in-
crease substantially with flattening. This increase may ex-
plain why especially huge exchange bias is observed in natu-
ral samples with extremely thin exsolution lamellae of 1-2
nm or less in thickness. The complex nature of lamellar mag-
netism makes it likely that the competing energy terms in Eq.
(37) will have a different physical meaning, or must be ex-
tended, in a more advanced theory. Especially the interaction
between close-spaced lamellae will lead to collective switch-
ing phenomena which needs further study.

B. Scaling of coercivity and exchange bias with particle size

An overall estimate of coercivity H,. is obtained by equat-
ing field energy and anisotropy energy in Eq. (37). With A*
~k* this yields H.=K,/(uyM,) for volume moments and
H.=~K,/(uow) for interface moments. Thus, smaller nanodot
moments lead to higher coercivity. Note that, due to ex-
change coupling between nanodot and matrix, this trend is
not counteracted by thermal activation.

Unlike for thin films, the nanodot model in Fig. 5 predicts
that only reversible loops occur for k*<<0.7. For small ¢ the
anisotropy energy varies like k*¢?, and therefore k* must be
on the order of 1 to generate an energy barrier, which over-
comes the ¢’ term of DW energy.

The hysteresis shift due to domain-wall formation for a
reversible curve is best estimated by considering that the
coercivity of the upper branch H is defined by the condition
that at this point the magnetic moment is rotated 7/2 away
from the field direction y. Thus ¢=y—/2, and by inserting
this into the minimum condition in Eq. (38) one obtains

hl=—a+2x-k"sin(2y). (40)

For small k*<1 the hysteresis loop is reversible and A cor-
responds to the exchange-bias field, which lies between —
and 0. In case of volume moments h*=he?/3, this corre-
sponds to

PHYSICAL REVIEW B 80, 174419 (2009)

-37K a -37A
poM, €  poM,ry’

Hp= (41)
For larger k™ in region 2 of the phase diagram, the exchange
bias is between A and &_. It therefore depends on the width
of the hysteresis loop which increases with increasing k*.
Close to the lower phase boundary in Fig. 5, the bias field is
substantially greater than the coercive force, and also is suf-
ficiently well estimated by Eq. (41). For large k* the bias
decreases, and even becomes positive for the stable hyster-
esis curves (after training) in region 3 of the phase diagram.
For oblate nanodots with interface moments Hp, unlike H..,
increases by an additional factor €.,/ €,;,, leading to even
larger bias.

Because the exchange bias according to Eq. (41) is pro-
portional to 1/€?, it grows much faster with decreasing par-
ticle size than in the thin-film case, where Hg 1/tgy. This
qualitative difference is caused by the decrease in domain-
wall energy proportional to nanodot radius € and not propor-
tional to nanodot surface *€>. To emphasize this result, we
compare the characteristic bias fields of a nanoparticle
(Hggo) t0 Hg gy of a thin film'® with the same thickness
tem= €N ap Which yields

37
HE go Hg fim = 7~ - (42)
2e
Thus, a system of nanodots with size e<1 can show a con-
siderably stronger bias than a system of thin films with the
same thickness.

The proposed nanodot model predicts a training effect of
biased hysteresis curves in case of sufficiently high aniso-
tropy k™ and for intermediate field directions as delineated in
Fig. 5. The training results from the combination of the
quasielastic DW energy and the sinusoidal anisotropy term in
Eq. (37), which together can create several energy minima
even for large field values (Fig. 7). An initial equilibrium
state can then be irreversibly switched to a loop between
metastable states.

C. Conclusions

To understand the origin of extremely large exchange bias
in natural samples with fine-scale exsolution structures, we
here developed the micromagnetic basis for a modified
Stoner-Wohlfarth hysteresis model for isolated FM nanodots,
exchange coupled to an AF matrix. The essential hysteresis
behavior of such nanodots, is qualitatively represented by a
two-parameter family of loops, depending on a scaled aniso-
tropy k* and an acute angle y between field direction and
easy anisotropy axis. It is found that isolated FM nanodots
necessarily produce large hysteresis shift if their size is small
with respect to the DW width of the matrix. Depending on k*
and y, also the hysteresis difference can show significant
exchange bias (Fig. 5). The modified Stoner-Wohlfarth
model predicts training branches for some nanodot hysteresis
loops. The training effect is physically explained by forma-
tion of AF domain walls with multiple rotations n X 180°,
n=2,3,.... The parameter range where training branches ex-
ist is outlined in Fig. 5. For a natural sample of lattice-
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oriented nanoscale ilmenite exsolution lamellae in a hematite
matrix, the temperature variation in measured hysteresis dif-
ferences closely resembles model results for an ensemble of
nanodots with surface moments, surface anisotropy, and a
narrow range of field angles. The formation of spherical AF
domain walls therefore provides a plausible explanation for
the extremely large exchange bias observed in this sample.
The previous study of Ref. 9 considered a different mecha-
nism based on the local exchange coupling across the
hematite-ilmenite contact layer. Their approach is comple-
mentary to our results, because it considers the atomistic
basis of the interface exchange-coupling energy Eq. (8) and
explores the possibility that this coupling is weak with re-
spect to anisotropy energy. Due to model-size restrictions,’
cannot account for DW-scale rotation in the AF matrix. In
contrast, our micromagnetic model focuses on these effects

PHYSICAL REVIEW B 80, 174419 (2009)

by assuming that exchange coupling is strong across the in-
terface, such that the FM nanodot moment directly rotates
the adjacent AF sublattice magnetization.
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